Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.

نویسندگان

  • Meng Li
  • Chengfu Xu
  • Junping Shi
  • Jiexia Ding
  • Xingyong Wan
  • Dahua Chen
  • Jianguo Gao
  • Chunxiao Li
  • Jie Zhang
  • Yiming Lin
  • Zhenhua Tu
  • Xiaoni Kong
  • Youming Li
  • Chaohui Yu
چکیده

OBJECTIVE Accumulation of free fatty acids (FFAs) in hepatocytes induces lipotoxicity, leading to non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate the underlying mechanisms by which FFA contributes to the pathogenesis of NAFLD via the regulation of 3-mercaptopyruvate sulfurtransferase (MPST), a key enzyme that regulates endogenous hydrogen sulfide (H2S) biosynthesis. DESIGN Hepatic MPST expression was evaluated in mice and patients with NAFLD. A variety of molecular approaches were used to study the effects of MPST regulation on hepatic steatosis in vivo and in vitro. RESULTS In vitro treatment of hepatocytes with FFAs upregulated MPST expression, which was partially dependent on NF-κB/p65. Hepatic MPST expression was markedly increased in high fat diet (HFD)-fed mice and patients with NAFLD. Partial knockdown of MPST via adenovirus delivery of MPST short hairpin RNA or heterozygous deletion of the Mpst gene significantly ameliorated hepatic steatosis in HFD-fed mice. Consistently, inhibition of MPST also reduced FFA-induced fat accumulation in L02 cells. Intriguingly, inhibition of MPST significantly enhanced rather than decreased H2S production, whereas MPST overexpression markedly inhibited H2S production. Co-immunoprecipitation experiments showed that MPST directly interacted with and negatively regulated cystathionine γ-lyase (CSE), a major source of H2S production in the liver. Mechanistically, MPST promoted steatosis via inhibition of CSE/H2S and subsequent upregulation of the sterol regulatory element-binding protein 1c pathway, C-Jun N-terminal kinase phosphorylation and hepatic oxidative stress. CONCLUSIONS FFAs upregulate hepatic expression of MPST and subsequently inhibit the CSE/H2S pathway, leading to NAFLD. MPST may be a potential therapeutic target for NAFLD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen Sulfide Promotes Adipogenesis in 3T3L1 Cells

The effect of hydrogen sulfide (H2S) on differentiation of 3T3L1-derived adipocytes was examined. Endogenous H2S was increased after 3T3L1 differentiation. The expression of the H2S-synthesising enzymes, cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST), was increased in a time-dependent manner during 3T3L1 differentiation. Expression o...

متن کامل

Production of Hydrogen Sulfide from D-Cysteine and Its Therapeutic Potential

Accumulating evidence shows that H2S has physiological functions in various tissues and organs. It includes regulation of neuronal activity, vascular tension, a release of insulin, and protection of the heart, kidney, and brain from ischemic insult. H2S is produced by enzymes from l-cysteine; cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase (3MST) along ...

متن کامل

Inhibition of 5-Lipoxygenase inhibitor zileuton in high-fat diet-induced nonalcoholic fatty liver disease progression model

Objective(s): Arachidonic Acid/5-lipoxygenase (AA/5-LOX) pathway connects lipid metabolism and proinflammatory cytokine, which are both related to the development and progression of nonalcoholic fatty liver disease (NAFLD). Therefore, the present study was designed to investigate the role of AA/5-LOX pathway in progression of NAFLD, and the effect of zileuton, an inhibitor of 5-LOX, in this mod...

متن کامل

Is development of high-grade gliomas sulfur-dependent?

We characterized γ-cystathionase, rhodanese and 3-mercaptopyruvate sulfurtransferase activities in various regions of human brain (the cortex, thalamus, hypothalamus, hippocampus, cerebellum and subcortical nuclei) and human gliomas with II to IV grade of malignancy (according to the WHO classification). The human brain regions, as compared to human liver, showed low γ-cystathionase activity. T...

متن کامل

Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics

Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H2S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H2S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gut

دوره   شماره 

صفحات  -

تاریخ انتشار 2017